The
Complete
Reference

C++

Part One examined the C subset of C++. Part Two describes those
features of the language specific to C++. That is, it discusses those
features of C++ that it does not have in common with C. Because many
of the C++ features are designed to support object-oriented
programming (OOP), Part Two also provides a discussion of its theory

| and merits. We will begin with an overview of C++.

The

Complete
Reference

An Overview of C++ '

256

C++: The Complete Reference

an object-oriented programming language, and its object-oriented features are

highly interrelated. In several instances, this interrelatedness makes it difficult
to describe one feature of C++ without implicitly involving several others. Moreover,
the object-oriented features of C++ are, in many places, so intertwined that discussion
of one feature implies prior knowledge of another. To address this problem, this chapter
presents a quick overview of the most important aspects of C++, including its history,
its key features, and the difference between traditional and Standard C++. The
remaining chapters examine C++ in detail.

This chapter provides an overview of the key concepts embodied in C++. C++ is

___| The Origins of C++

C++ began as an expanded version of C. The C++ extensions were first invented
by Bjarne Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He
initially called the new language "C with Classes.” However, in 1983 the name was
changed to C++.

Although C was one of the most liked and widely used professional programming
languages in the world, the invention of C++ was necessitated by one major program-
ming factor: increasing complexity. Over the years, computer programs have become
larger and more complex. Even though C is an excellent programming language, it has
its limits. In C, once a program exceeds from 25,000 to 100,000 lines of code, it becomes
so complex that it is difficult to grasp as a totality. The purpose of C++ is to allow this
barrier to be broken. The essence of C++ is to allow the programmer to comprehend
and manage larger, more complex programs.

Most additions made by Stroustrup to C support object-oriented programming,
sometimes referred to as OOP. (See the next section for a brief explanation of object-
oriented programming.) Stroustrup states that some of C++'s object-oriented features
were inspired by another object-oriented language called Simula67. Therefore, C++
represents the blending of two powerful programming methods.

Since C++ was first invented, it has undergone three major revisions, with each
adding to and altering the language. The first revision was in 1985 and the second in
1990. The third occurred during the standardization of C++. Several years ago, work
began on a standard for C++. Toward that end, a joint ANSI (American National
Standards Institute) and ISO (International Standards Organization) standardization
committee was formed. The first draft of the proposed standard was created on
January 25, 1994. In that draft, the ANSI/ISO C++ committee (of which I was a member)
kept the features first defined by Stroustrup and added some new ones as well. But in
general, this initial draft reflected the state of C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred
that caused the language to be greatly expanded: the creation of the Standard Template
Library (STL) by Alexander Stepanov. The STL is a set of generic routines that you can
use to manipulate data. It is both powerful and elegant, but also quite large. Subsequent

]

Chapter 11: An Overview of C++

to the first draft, the committee voted to include the STL in the specification for C++. The
addition of the STL expanded the scope of C++ well beyond its original definition. While
important, the inclusion of the STL, among other things, slowed the standardization

of C++.

[t is fair to say that the standardization of C++ took far longer than anyene had
expected when it began. In the process, many new features were added to the language
and many small changes were made. In fact, the version of C++ defined by the C++
committee is much larger and more complex than Stroustrup's original design. The
final draft was passed out of committee on November 14, 1997 and an ANSI/ISO
standard for C++ became a reality in 1998. This specification for C++ is commonly
referred to as Standard C++.

The material in this book describes Standard C++, including all of its newest
features. This is the version of C++ created by the ANSI/ISO standardization
committee, and it is the one that is currently accepted by all major compilers.

What Is Object-‘Orriented Programming?

Since object-oriented programming (OOP) drove the creation of C++, it is necessary
to understand its foundational principles. OOP is a powerful way to approach the job
of programming. Programming methodologies have changed dramatically since the
invention of the computer, primarily to accommodate the increasing complexity of
programs. For example, when computers were first invented, programming was done
by toggling in the binary machine instructions using the computer’s front panel. As
long as programs were just a few hundred instructions long, this approach worked.
As programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs, using symbolic representations of the
machine instructions. As programs continued to grow, high-level languages were
introduced that gave the programmer more tools with which to handle complexity.
The first widespread language was, of course, FORTRAN. Although FORTRAN was
a very impressive first step, it is hardly a language that encourages clear, easy-to-
understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by
languages such as C and Pascal. The use of structured languages made it possible to
write moderately complex programs fairly easily. Structured languages are characterized
by their support for stand-alone subroutines, local variables, rich control constructs, and
their lack of reliance upon the GOTO. Although structured languages are a powerful tool,
they reach their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques
and tools were created to allow the programmer to deal with increasingly greater
complexity. Each step-of the way, the new approach took the best elements of the
previous methods and moved forward. Prior to the invention of OOP, many projects
were nearing (or exceeding) the point where the structured approach no longer

257

C++: The Complete Reference

worked. Object-oriented methods were created to help programmers break through
these barriers.

Object-oriented programming took the best ideas of structured programming
and combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in
one of two ways: around its code (what is happening) or around its data (who is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as "code acting on data.”
For example, a program written in a structured language such as C is defined by
its functions, any of which may operate on any type of data used by the program.

Object-oriented programs work the other way around. They are organized
around data, with the key principle being "data controlling access to code.” In an
object-oriented language, you define the data and the routines that are permitted
to act on that data. Thus, a data type defines precisely what sort of operations can
be applied to that data.

To support the principles of object-oriented programming, all OOP languages
have three traits in common: encapsulation, polymorphism, and inheritance. Let's
examine each.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. In an object-oriented
language, code and data may be combined in such a way that a self-contained "black
box" is created. When code and data are linked together in this fashion, an object is
created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is,
private code or data may not be accessed by a piece of the program that exists outside
the object. When code or data is public, other parts of your program may access it even
though it is defined within an object. Typically, the public parts of an object are used to
provide a controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may
seem strange that an object that links both code and data can be thought of as a
variable. However, in object-oriented programming, this is precisely the case. Each
time you define a new type of object, you are creating a new data type. Each specific
instance of this data type is a compound variable.

Polymorphism

Object-oriented programming languages support polymorphism, which is characterized
by the phrase "one interface, multiple methods." In simple terms, polymorphism is the
attribute that allows one interface to control access to a general class of actions. The

Chapter 11: An Overview of C++ 2& '

specific action selected is determined by the exact nature u1 ww situation. A real-world
example of polymorphism is a thermostat. No matter what type of furnace your house
has (gas, oil, electric, etc.), the thermostat works the same way. In this case, the thermostat
(which is the interface) is the same no matter what type of furnace (method) yeu have.
For example, if you want a 70-degree temperature, you set the thermostat to 70 degrees.
It doesn't matter what type of furnace actually provides the heat.

This same principle can also apply to programming. For example, you might
have a program that defines three different types of stacks. One stack is used for
integer values, one for character values, and one for floating-point values. Because
of polymorphism, you can define one set of names, push() and pop(), that can be used
for all three stacks. In your program you will create three specific versions of these
functions, one for each type of stack, but names of the functions will be the same. The
compiler will automatically select the right function based upon the data being stored.
Thus, the interface to a stack—the functions push() and pop()—are the same no
matter which type of stack is being used. The individual versions of these functions
define the specific implementations (methods) for each type of data.

Polymorphism helps reduce complexity by allowing the same interface to be used
to access a general class of actions. It is the compiler's job to select the specific action
(i.e., method) as it applies to each situation. You, the programmer, don't need to do
this selection manually. You need only remember and utilize the general interface.

The first object-oriented programming languages were interpreters, so poly-
morphism was, of course, supported at run time. However, C++ is a compiled
language. Therefore, in C++, both run-time and compile-time polymorphism
are supported.

Inheritance

Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If you think
about it, most knowledge is made manageable by hierarchical classifications. For
example, a Red Delicious apple is part of the classification apple, which in turn is part
of the fruit class, which is under the larger class food. Without the use of classifications,
each object would have to define explicitly all of its characteristics. However, through
the use of classifications, an object need only define those qualities that make it unique
within its class. It is the inheritance mechanism that makes it possible for one object to
be a specific instance of a more general case. As you will see, inheritance is an important
aspect of object-oriented programming,.

___| some C++ Fundamentals

In Part One, the C subset of C++ was described and C programs were used to
demonstrate those features. From this point forward, all examples will be "C++

260 C++: The Complete Reference

programs.” That is, they will be making use of features unique to C++. For ease of
discussion, we will refer to these C++-specific features simply as "C++ features” from
now on.

If you come from a C background, or if you have been studying the C subset
programs in Part One, be aware that C++ programs differ from C programs in some
important respects. Most of the differences have to do with taking advantage of C++'s
object-oriented capabilities. But C++ programs differ from C programs in other ways,
including how I/0O is performed and what headers are included. Also, most C++
programs share a set of common traits that clearly identify them as C++ programs.
Before moving on to C++'s object-oriented constructs, an understanding of the
fundamental elements of a C++ program is required.

This section describes several issues relating to nearly all C++ programs. Along the
way, some important differences with C and earlier versions of C++ are pointed out.

A Sample C++ Program

Let's start with the short sample C++ program shown here.

#include <iostream>
using namespace std;

int main()

{

int i;

cout << "This is output.\n"; // this is a single line comment
/* you can still use C style comments */

// input a number using >>
cout << "Enter a number: ";
cin >> i;

// now, output a number using <<
cout << 1 << " squared is " << i*1i << "\n";

return 0;

As you can see, this program looks much different from the C subset programs
found in Part One. A line-by-line commentary will be useful. To begin, the header
<iostream> is included. This header supports C++-style I/O operations. (<iostream>
is to C++ what stdio.h is to C.) Notice one other thing: there is no .h extension to the

Chapter 11: An Overview of C++ 261 -

name iostream. The reason is that <iostream> is one of the modern-style headers
defined by Standard C++. Modern C++ headers do not use the .h extension.
The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a recent addition

to C++. A namespace creates a declarative region in which various program elements can
be placed. Namespaces help in the organization of large programs. The using statement
informs the compiler that you want to use the std namespace. This is the namespace in
which the entire Standard C++ library is declared. By using the std namespace you
simplify access to the standard library. The programs in Part One, which use only the C
subset, don't need a namespace statement because the C library functions are also
available in the default, global namespace.

| Since both new-style headers and namespaces are recent additions to C++, you may
encounter older code that does not use them. Also, if you are using an older compiler,
it may not support them. Instructions for using an older compiler are found later in

this chapter.

Now examine the following line.

int main{()

Notice that the parameter list in main() is empty. In C++, this indicates that main()
has no parameters. This differs from C. In C, a function that has no parameters must
use void in its parameter list, as shown here:

int main{(void)

This was the way main() was declared in the programs in Part One. However, in
C++, the use of void is redundant and unnecessary. As a general rule, in C++ when
a function takes no parameters, its parameter list is simply empty; the use of void is
not required.

The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment

First, the statement

% cout << "This is output.\n";

Note

C++: The Complete Reference

causes This is output. to be displayed on the screen, followed by a carriage return-
linefeed combination. In C++, the << has an expanded role. It is still the left shift
operator, but when it i used as shown in this example, it is also an output operator. The
word cout is an identifier that is linked to the screen. (Actually, like C, C++ supports
I/0O redirection, but for the sake of discussion, assume that cout refers to the screen.)
You can use cout and the << to output any of the built-in data types, as well as strings
of characters.

Note that you can still use printf() or any other of C's I/O functions in a C++
program. However, most programmers feel that using << is more in the spirit of C++.
Further, while using printf() to output a string is virtually equivalent to using << in
this case, the C++ /0 system can be expanded to perform operations on objects that
you define (something that you cannot do using printf()).

What follows the output expression is a C++ single-line comment. As mentioned
in Chapter 10, C++ defines two types of comments. First, you may use a multiline
comment, which works the same in C++ as in C. You can also define a single-line comment
by using //; whatever follows such a comment is ignored by the compiler until the end of
the line is reached. In general, C++ programmers use multiline comments when a longer
comment is being created and use single-line comments when only a short remark is
needed.

Next, the program prompts the user for a number. The number is read from the
keyboard with this statement:

l cin >> 1i;

In C++, the >> operator still retains its right shift meaning. However, when used
as shown, it also is C++'s input operator. This statement causes i to be given a value
read from tne keyboard. The identifier cin refers to the standard input device, which
is usually the keyboard. In general, you can use cin >> to input a variable of any of
the basic data types plus strings.

The line of code just described is not misprinted. Specifically, there is not supposed to be
an & in front of the i. When inputting information using a C-based function like scanf(),
you have to explicitly pass a pointer to the variable that will receive the information. This
means preceding the variable name with the "address of” operator, &. However, because of
the way the >> operator is implemented in C++, you do not need (in fact, must not use)
the &. The reason for this is explained in Chapter 13.

Although it is not illustrated by the example, you are free to use any of the
C-based input functions, such as scanf(), instead of using >>. However, as with
cout, most programmers feel that cin >> is more in the spirit of C++.

Another interesting line in the program is shown here:

l cout << i << "squared is " << 1*i << "“\n";

Chapter 11: An Overview of C++

Assuming that i has the value 10, this statement causes the phrase 10 squared is 100
to be displayed, followed by a carriage return-linefeed. As this line illustrates, you can
run together several << output operations.

The program ends with this statement:

return 0;

This causes zero to be returned to the calling process (which is usually the operating
system). This works the same in C++ as it does in C. Returning zero indicates that the
program terminated normally. Abnormal program termination should be signaled by
returning a nonzero value. You may also use the values EXIT_SUCCESS and EXIT_
FAILURE if you like.

A Closer Look at the 1/0 Operators

As stated, when used for 1/0, the << and >> operators are capable of handling any
of C++'s built-in data types. For example, this program inputs a float, a double, and
a string and then outputs them:

#include <iostream>

using namespace std;

int main()

{
float f;
char stxr[80];
double d;

cout << "Enter two floating point numbers: ";
cin »> f »>> d;
cout << "Enter a string: ";

cin >> str;
cout << f << " " << d << " " << str;

return 0;

)

When you run this program, try entering This is a test. when prompted for the
string. When the program redisplays the information you entered, only the word "This"
will be displayed. The rest of the string is not shown because the >> operator stops
reading input when the first white-space character is encountered. Thus, "is a test” is

264 C++:The Complete Reference

never read by the program. This program also illustrates that you can string together
several input operations in a single statement.

The C++ 1/0 operators recognize the entire set of backslash character constants
described in Chapter 2. For example, it is perfectly acceptable to write

cout << "A\tB\tC";

This statement outputs the letters A, B, and C, separated by tabs.

Declaring Local Variables

If you come from a C background, you need to be aware of an important difference
between C and C++ regarding when local variables can be declared. In €89, you must
declare all local variables used within a block at the start of that block. You cannot declare
a variable in a block after an "action” statement has occurred. For example, in C89, this
fragment is incorrect:

/* Incorrect in C89. OK in C++. */
int f£()
{

int 1i;

i = 10;

int j; /* won't compile as a C program */
J o= 1*2;

return j;

In a C89 program, this function is in error because the assignment intervenes between
the declaration of i and that of j. However, when compiling it as a C++ program, this
fragment is perfectly acceptable. In C++ (and C99) you may declare local variables at
any point within a block—not just at the beginning.

Here is another example. This version of the program from the preceding section
declares str just before it is needed.

#include <iostream>
using namespace std;

int main()

{
float £;

No

Chapter 11: An Overview of C++

double d;
cout << "Enter two floating point numbers: ";
cin »>> £ »> d;

cout << "Enter a string: ";
char str(80]; // str declared here, just kefcre lst use
cin >> str;

cout << f << " " << d << " " << 8TUY;

return 0;

[

Whether you declare all variables at the start of a block or at the point of first use is
completely up to you. Since much of the philosophy behind C++ is the encapsulation of
code and data, it makes sense that you can declare variables close to where they are used
instead of just at the beginning of the block. In the preceding example, the declarations
are separated simply for illustration, but it is easy to imagine more complex examples in
which this feature of C++ is more valuable.

Declaring variables close to where they are used can help you avoid accidental side
effects. However, the greatest benefit of declaring variables at the point of first use is
gained in large functions. Frankly, in short functions (like many of the examples in this
book), there is little reason not to simply declare variables at the start of a function. For
this reason, this book will declare variables at the point of first use only when it seems
warranted by the size or complexity of a function.

There is some debate as to the general wisdom of localizing the declaration of
variables. Opponents suggest that sprinkling declarations throughout a block makes
it harder, not easier, for someone reading the code to find quickly the declarations
of all variables used in that block, making the program harder to maintain. For this
reason, some C++ programmers do not make significant use of this feature. This book
will not take a stand either way on this issue. However, when applied properly,
especially in large functions, declaring variables at the point of their first use can
help you create bug-free programs more easily.

Default to int

A few years ago, there was a change to C++ that may affect older C++ code as well as C
code being ported to C++. Both C89 and the original specification for C++ state that
when no explicit type is specified in a declaration, type int is assumed. However, the
"default-to-int” rule was dropped from C++ during standardization. C99 also drops this
rule. However, there is still a large body of C and older C++ code that uses this rule.

265

266 C++: The Complete Reference

The most common use of the "default-to-int” rule is with function return types. It
was common practice to not specify int explicitly when a function returned an integer
result. For example, in C89 and older C++ code the following function is valid.

func(int 1)
{

return i*i;

In Standard C++, this function must have the return type of int specified, as shown here.

int func(int i)

return i*i;

As a practical matter, nearly all C++ compilers still support the "default-to-int” rule for
compatibility with older code. However, you should not use this feature for new code
because it is no longer allowed.

The bool Data Type

C++ defines a built-in Boolean type called bool. Objects of type bool can store only the
values true or false, which are keywords defined by C++. As explained in Part One,
automatic conversions take place which allow bool values to be converted to integers,
and vice versa. Specifically, any non-zero value is converted to true and zero is converted
to false. The reverse also occurs; true is converted to 1 and false is converted to zero.
Thus, the fundamental concept of zero being false and non-zero being true is still fully
entrenched in the C++ language.

l Although C89 (the C subset of C++) docs not define a Boolean type, C99 adds to
the C laiiguage a type called _Bool, which is capable of storing the values 1 and 0
(i.c., trueffalse). Unlike C++, C99 does not define true and false as keywords.
Thus, _Bool as defined by C99 is incompatible with bool as defined by C++.

The reason that C99 specifies _Bool rather than bool as a keyword is that many
preexisting C programs have aleady defined their own custont versions of bool. By
defining the Boolean type as _Bool, C99 nvoids breaking this preexisting code. However,
it is possible to achieve compatibility between C++ and C99 on this point because C99
adds the header <stdbool.h> which defines the macros bool, true, and false. By
including this header, you can create code that is compatible with both C99 and C++.

Chapter 11: An Overview of C++ 267

___| old-Style vs. Modern C++

As explained, C++ underwent a rather extensive evolutionary process during its
development and standardization. As a result, there are really two versions of C++.
The first is the traditional version that is based upon Bjarne Stroustrup's original
designs. The second is Standard C++, which was created by Stroustrup and the
ANSI/ISO standardization committee. While these two versions of C++ are very
similar at their core, Standard C++ contains several enhancements not found in
traditional C++. Thus, Standard C++ is essentially a superset of traditional C++.

This book describes Standard C++. This is the version of C++ defined by the
ANSI/1SO standardization committee and the one implemented by all modern C++
compilers. The code in this book reflects the contemporary coding style and practices
as encouraged by Standard C++. However, if you are using an older compiler, it
may not accept all of the programs in this book. Here's why. During the process of
standardization, the ANSI/ISO committee added many new features to the language.
As these features were defined, they were implemented by compiler developers. Of
course, there is always a lag time between when a new feature is added to the language
and when it is available in commercial compilers. Since features were added to C++
over a period of years, an older compiler might not support one or more of them. This
is important because two recent additions to the C++ language affect every program
that you will write—even the simplest. If you are using an older compiler that does
not accept these new features, don't worry. There is an easy work-around, which is
described here.

The key differences between old-style and modern code involve two features:
new-style headers and the namespace statement. To understand the differences, we
will begin by looking at two versions of a minimal, do-nothing C++ program. The
first version shown here reflects the way C++ programs were written using old-style
coding.

/*
An old-style C++ program.
*/

#include <iostream.h>
int main()

{
return 0O;

Pay special attention to the #include statement. It includes the file jostream.h, not the
header <iostream>. Also notice that no namespace statement is present.

268 C++: The Complete Reference

Here is the second version of the skeleten, which uses the modern style.

/*
A modern-style CU++ program thet uses

the new-style headers
*/

#include <ilostream-

nomespace.

using namespace std;

int main()
{
return 0;

This version uses the C++-style header and specifies a namespace. Both of these
features were mentioned in passing earlier. Let's look closely at them now.

The New C++ Headers

As you know, when you use a librarv function in a program, you must include its
header. This is done using the #include statement. For example, in C, to include the
header for the I/0O functions, you include stdio.h with a statement like this:

#include <stdio.h>

Here, stdio.h is the name of the file used by the I/O functions, and the preceding
statement causes that file to be included in vour program. The key point is that this
#include statement normally includes a file.

When C++ was first invented and for several years after that, it used the same style
of headers as did C. That is, it used header files. In fact, Standard C++ still supports
C-style headers for header files that you create and for backward compatibility.
However, Standard C++ created a new kind of header that is used by the Standard
C++ library. The new-style headers do not specify filenames. Instead, they simply
specify standard identifiers that may be mapped to files by the compiler, although
they need not be. The new-style C++ headers are an abstraction that simply guarantee
that the appropriate prototypes and definitions required by the C++ library have
been declared.

Since the new-style headers are not filenames, thev do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example, here
are some of the new-style headers supported by Standard C++.

<iostream> <fstream> <vector> <string>

Chapter 11: An Overview of C++ 269

The new-style headers are included using the #include statement. The only difference
is that the new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard
C-style header files associated with that library. That is, header files such as stdio.h
or ctype.h are still available. However, Standard C++ also defines new-style headers
that you can use in place of these header files. The C++ versions of the C standard
headers simply add a "¢” ;refix to the filename and drop the .h. For example, the C++
new-style header for matli.h is <cmath>. The one for string.h is <cstring>. Although it
is currently permissible to include a C-style header file when using C library functions,
this approach is deprecated by Standard C++ (that is, it is not recommended). For
this reason, from this point forward, this book will use new-style C++ headers in all
#include statements. If your compiler does not support new-style headers for the C
function library, then simply substitute the old-style, C-like headers.

Since the new-style header is a relatively recent addition to C++, you will still find
many, many older programs that don't use it. These programs employ C-style headers,
in which a filename is specified. As the old-style skeletal program shows, the traditional
way to include the I/O header is as shown here.

#include <iostream.h>

This causes the file iostream.h to be included in your program. In general, an old-style
header file will use the same name as its corresponding new-style header with a
Jhappended.

As of this writing, all C++ compilers support the old-style headers. However, the
old-style headers have been declared obsolete and their use in new programs is not
recommended. This is why they are not used in this book.

Remember While still commion in existing C++ code, old-style headers are obsolete.

Namespaces

When you include a new-style header in your program, the contents of that header

are contained in the std namespace. A namespace is simply a declarative region. The
purpose of a namespace is to localize the names of identifiers to avoid name collisions.
Flements declared in one namespace are separate from elements declared in another.
Originally, the names of the C++ library functions, etc., were simply put into the global
namespace (as they are in C). However, with the advent of the new-style headers, the
contents of these headers were placed in the std namespace. We will look closely at
namespaces later in this book. For now, you won't need to worry about them because
the statement

i
A3 . =
{¥ using namespace std;

270

C++: The Complete Reference

brings the std namespace into visibility (i.e., it puts std into the global namespace).
After this statement has been compiled, there is no difference between working with
an old-style header and a new-style one.

One other point. fo. the sake of compatibility, when a C++ program includes a C
header, such as stdio.h, its contents are put into the global namespace. This allows a
C++ compiler to compile C-subset programs.

Working with an Old Compiler

As explained, both namespaces and the new-style headers are fairly recent additions
to the C++ language, added during standardization. While all new C++ compilers
support these features, older compilers may not. When this is the case, your compiler
will report one or more errors when it tries to compile the first two lines of the sample
programs in this book. If this is the case, there is an easy work-around: simply use an
old-style header and delete the namespace statement. That is, just replace

#include <iostream>
using namespace std;

with
! #include <iostream.h>

This change transforms a modern program into an old-style one. Since the old-style
header reads all of its contents into the global namespace, there is no need for a
namespace statement.

One other point: for now and for the next few years, you will see many C++
programs that use the old-style headers and do not include a using statement. Your
C++ compiler will be able to compile them just fine. However, for new programs,
you should use the modern style because it is the only style of program that complies
with the C++ Standard. While old-style programs will continue to be supported for
many years, they are technically noncompliant.

___| Introducing C++ Classes

This section introduces C++'s most important feature: the class. In C++, to create an
object, you first must define its general form by using the keyword class. A class is

similar syntactically to a structure. Here is an example. The following class defines

a type called stack, which will be used to create a stack:

#define SIZE 100

Chapter 11: An Overview of C++

// This creates the class stack.
class stack {
int stck[SIZE];
int tos;
public:
void init();
vold push{int i};
int pop();
Y

A class may contain private as well as public parts. By default, all items defined in
a class are private. For example, the variables stck and tos are private. This means that
they cannot be accessed by any function that is not a member of the class. This is one
way that encapsulation is achieved—access to certain items of data may be tightly
controlled by keeping them private. Although it is not shown in this example, you
can also define private functions, which then may be called only by other members
of the class.

To make parts of a class public (that is, accessible to other parts of your program),
vou must declare them after the public keyword. All variables or functions defined
after public can be accessed by all other functions in the program. Essentially, the rest
of your program accesses an object through its public functions. Although you can
have public variables, good practice dictates that you should try to limit their use.
Instead, you should make all data private and control access to it through public
functions. One other point: Notice that the public keyword is followed by a colon.

The functions init(), push(), and pop() are called member functions because they
are part of the class stack. The variables stck and tos are called member variables (or data
members). Remember, an object forms a bond between code and data. Only member
functions have access to the private members of their class. Thus, only init(), push(),
and pop() may access stck and tos.

Once you have defined a class, you can create an object of that type by using the
class name. In essence, the class name becomes a new data type specifier. For example,
this creates an object called mystack of type stack:

stack mystack;

When you declare an object of a class, you are creating an instance of that class. In this
case, mystack is an instance of stack. You may also create objects when the class is
defined by putting their names after the closing curly brace, in exactly the same way
as you would with a structure.

To review: In C++, class creates a new data type that may be used to create objects
of that type. Therefore, an object is an instance of a class in just the same way that some
other variable is an instance of the int data type, for example. Put differently, a class is a

271

272

C++: The Complete Reference

logical abstraction, while an object is real. (That is, an object exists inside the memory of
the computer.)
The general form of a simple class declaration is

class class-name |

private data and functions
public:

public data and functions
} object name list;

Of course, the object name list may be empty.

Inside the declaration of stack, member functions were identified using their
prototypes. In C++, all functions must be prototyped. Prototypes are not optional.

The prototype for a member function within a class definition serves as that function's
prototype in general.

When it comes time to actually code a function that is the member of a class, you
must tell the compiler which class the function belongs to by qualifying its name with
the name of the class of which it is a member. For example, here is one way to code the
push() function:

void stack::push(int 1)
{
if(tos==SIZE) {
cout << “Stack is full.\n";
return;
}
stck[tos]) = 1;
tos++;

The :: is called the scope resolution operator. Essentially, it tells the compiler that this
version of push() belongs to the stack class or, put differently, that this push() is in
stack’s scope. In C++, several different classes can use the same function name. The
compiler knows which function belongs to which class because of the scope resolution
operator.

When you refer to a member of a class from a piece of code that is not part of the
class, you must always do so in conjunction with an object of that class. To do so, use
the object's name, followed by the dot operator, followed by the name of the member.
This rule applies whether you are accessing a data member or a function member. For
example, this calls init() for object stack1.

stack stackl, stack?2;

§§ stackl.init () ;

Chapter 11: An Overview of C++

This fragment creates two objects, stack1 and stack2, and initializes stackl.
Understand that stack1 and stack?2 are two separate objects. This means, for example,
that initializing stack1 does not cause stack2 to be initialized as well. The only
relationship stack1 has with stack2 is that they are objects of the same type.

Within a class, one member function can call another member function or refer to
a data member directly, without using the dot operator. It is only when a member is
referred to by code that does not belong to the class that the object name and the dot
operator must be used.

The program shown here puts together all the pieces and missing details and
illustrates the stack class:

#include <iostream>

using namespace std;
#define SIZE 100

// This creates the class stack.
class stack {
int stck([SIZE];
int tos;
public:
void init();
void push(int 1);
int pop();
}s

void stack::init ()
{
tos = 0;

void stack::push(int 1)
{
if(tos==SIZE) {
cout << "Stack is full.\n";
return;
}
stckltos] = 1;
tos++;

int stack::pop()
{
if(tos==0) {

273

274 C++: The Complete Reference

cout << "Stack underflow.\n";
return 0;

}

tos--;

return stckltos];

int main()

{

stack stackl, stack2; // create two stack objects

stackl.init();
stack2.init();

stackl.push(1);
stack2.push(2);

stackl.push(3) ;
stack2.push(4) ;

cout << stackl.pop(i << " »;
cout << stackl.pop(i << " ",
cout << stack2.pop(; << " n.
cout << stack2.pop(; << "\n":

return 0;

The output from this program is shown here.

ll 3142

One last point: Recall that the private members of an object are accessible only by
functions that are members of that object. For example, a statement like

stackl.tos = 0; // Error, tos is private.

could not be in the main() function of the previous program because tos is private.

Chapter 11: An Overview of C++ 275

___| Function Overloading

One way that C++ achieves polymorphism is through the use of function overloading.
In C++, two or more functions can share the same name as long as their parameter
declarations are different. In this situation, the functions that share the same name are
said to be overloaded, and the process is referred to as functioin overloading.

To see why function overloading is important, first consider three functions defined
by the C subset: abs(), labs(), and fabs(). The abs() function returns the absolute
value of an integer, labs() returns the absolute value of a long, and fabs() returns the
absolute value of a double. Although these functions perform almost identical actions,
in C three slightly different names must be used to represent these essentially similar
tasks. This makes the situation more complex, conceptually, than it actually is. Even
though the underlying concept of each function is the same, the programmer has to
remember three things, not just one. However, in C++, you can use just one name for
all three functions, as this program illustrates:

#include <iostream>

using namespace std;

// abs is overloaded three ways
int abs(int 1);

double abs(double d);

long abs(long 1);

int main()

{
cout << abs(-10) << "\n";
cout << abs{-11.0) << "\n";
cout << abs(-9L) << "\n";
return 0;

int abs(int i)

{

cout << "Using integer abs({)\n";

276 C++: The Complete Reference

return i<0 ? -i : 1;

-

double abs(double di

{
cout << "Using double abs()\n";

return d<0.0 ? -d : d;

long abs(long 1)
{

cout << "Using long abs()\n";

return 1<0 ? -1 : 1;

The output from this program is shown here.

Using integer abs ()
10

Using double abs()
11

Using long abs ()

9

This program creates three similar but different functions called abs(), each of
which returns the absolute value of its argument. The compiler knows which function
to call in each situation because of the type of the argument. The value of overloaded
functions is that they allow related sets of functions to be accessed with a common
name. Thus, the name abs() represents the general action that is being performed. It is
left to the compiler to choose the right specific method for a particular circumstance.
You need only remember the general action being performed. Due to polymorphism,
three things to remember have been reduced to one. This example is fairly trivial, but
if you expand the concept, you can see how polymorphism can help you manage very
complex programs.

In general, to overload a function, simply deciare different versions of it. The
compiler takes care of the rest. You must observe une important restriction when
overloading a function: the type and/or number of the parameters of each overloaded
function must differ. It is not sufficient for two functions to differ only in their return
types. They must differ in the types or number of their parameters. (Return types do
not provide sufficient information in all cases for the compiler to decide which function
to use.) Of course, overloaded functions may differ in their return types, too.

Chapter 11: An Overview of C++ 277

Here is another example that uses overloaded functions:

#include <iostream>

4include <cstdio>

#include <cstring>

using namespace std;

void stradd(char *sl, char *sZi:
void stradd{char *si, int i);
int main()

{

char str(807;

strcpy (str, "Hello ");
stradd(str, "there");
cout << str << "\n";

stradd(str, 100);
cout << str << "\n";

return 0;

// concatenate two strings
void stradd(char *sl, char *s2)
{

strcat(sl, s2);

// concatenate a string with a "stringized" integer
void stradd(char *sl, int 1)
{

char temp(80];

sprintf(temp, "%d4d", 1i);
strcat(sl, temp);

’

-

In this program, the function stradd() is overloaded. One version concatenates
two strings (just like strcat() does). The other version "stringizes” an integer and then
appends that to a string. Here, overloading is used to create one interface that appends
either a string or an integer to another string.

278

C++: The Complete Reference

You can use the same name to overload unrelated functions, but you should
not. For example, you could use the name sqr() to create functions that return the
square of an int and the square root of a double. However, these two operations are
fundamentally different; applying function overloading in this manner defeats its
purpose (and, in fact, is considered bad programming style). In practice, you should
overload only closely related operations.

Operator Overloading

Polymorphism is also achieved in C++ through operator overloading. As you know, in
C++, it is possible to use the << and >> operators to perform console 1/0 operations.
They can perform these extra operations because in the <iostream> header, these
operators are overloaded. When an operator is overloaded, it takes on an additional
meaning relative to a certain class. However, it still retains all of its old meanings.

In general, you can overload most of C++'s operators by defining what they mean
relative to a specific class. For example, think back to the stack class developed earlier
in this chapter. It is possible to overload the + operator relative to objects of type stack
so that it appends the contents of one stack to the contents of another. However, the +
still retains its original meaning relative to other types of data.

Because operator overloading is, in practice, somewhat more complex than function
overloading, examples are deferred until Chapter 14.

Inheritance

As stated earlier in this chapter, inheritance is one of the major traits of an object-
oriented programming language. In C++, inheritance is supported by allowing one
class to incorporate another class into its declaration. Inheritance allows a hierarchy
of classes to be built, moving from most general to most specific. The process involves
first defining a base class, which defines those qualities common to all objects to be
derived from the base. The base class represents the most general description. The
classes derived from the base are usually referred to as derived classes. A derived class
includes all features of the generic base class and then adds qualities specific to the
derived class. To demonstrate how this works, the next example creates classes that
categorize different types of buildings.

To begin, the building class is declared, as shown here. It will serve as the base for
two derived classes.

class building {
int rooms;
int floors;
int area;

Chapter 11: An Overview of C+ +

public:
void set_rooms (int num) ;
int get_rooms(};
vold set floors(int num) ;
int get_floors{();
void set_area(int num) ;
int get_areal();

I

Because (for the sake of this example) all buildings have three common features
one or more rooms, one or more floors, and a total area—the building class embodies
these components into its declaration. The member functions beginning with set set
the values of the private data. The functions starting with get return those values.

You can now use this broad definition of a building to create derived classes that
describe specific types of buildings. For example, here is a derived class called house:

// house is derived from building
class house : public building {
int bedrooms;
int baths;
public:
void set_bedrooms (int num) ;
int get_bedrooms () ;
vold set_baths (int num) ;
int get_baths();
Y

Notice how building is inherited. The general form for inheritance is

class derived-class : access base-class |
/ / body of new class

Here, access is optional. However, if present, it must be public, private, or protected.
(These options are further examined in Chapter 12.) For now, all inherited classes

will use public. Using public means that all of the public members of the base class
will become public members of the derived class. Therefore, the public members of the
class building become public members of the derived class house and are available to
the member functions of house just as if they had been declared inside house. However,
house's member functions do not have access to the private elements of building. This
is an important point. Even though house inherits building, it has access only to the

279

280 C++: The Complete Reference

public members of building. In this way, inheritance does not circumvent the principles
of encapsulation necessary to OOP.

Remembe A derived class has direct access to both its own members and the public members of
eime;)
the base class.

Here is a program illustrating inheritance. It creates two derived classes of building
using inheritance; one is house, the other, school.

5

#include <iostream>

using namespace std;

class building {
int rooms;
int floors;
int area;

public:
void set_rooms (int num) ;
int get_rooms () ;
void set_floors(int num);
int get_floors();
void set_area(int num);
int get_areal);

Y

// house is derived from building
class house : public building {
int bedrooms;
int baths;
public:
void set_bedrooms (int num) ;
int get_bedrooms () ;
void set_baths (int num);
int get_baths();
}:

// school is also derived from building
class school : public building {

int classrooms;

int offices;
public:

void set_classrcoms (int num);

int get_classrooms () ;
void set_offices(int num) ;
int get_offices();

b

void building::set_rooms (int num)
{

rooms = num;

void building::set_floors(int num)
{

floors = num;

void building::set_area(int num)
{

area = num;

int building::get_rooms ()
{

return rooms;

int building::get_floors/()
{

return floors;

int building: :get_area()
{

return area;

-

void house::set_bedrooms (int num)

{

bedrooms = num;

void house::set_baths(int num)

{

Chapter 11:

An Overview of C+ +

- 281

C++: The Complete Reference

baths = num;

int house: :get_bedrooms()
{

return bedrooms;

int house::get_baths ()

{
return baths;

void school::set_classrooms (int num)
{

classrooms = num;

void school::set_offices (int num)
{

offices = num;

int school::get_classrooms ()
{

return classroons;

int school::get_offices()
{

return offices;

int main()
{
house h;
school s;
.set_rooms (12);
.set_floors(3});
.set_area(4500)
.set_bedrooms (&

= s o N

)

|

Chapter 11: An Overview of C+ +

h.set_baths(3);

cout << "house has " << h.get_bedrooms{();
cout << " bedrooms\n";

s.set_rooms (200);

s.set_classrooms (180) ;

s.set_offices(5);

s.set_area(25000) ;

cout << "school has " << s.get_classrooms() ;
cout << " classrooms\n";

cout << "Its area is " << s.get_areal);

return 0;

The output produced by this program is shown here.

house has 5 bedrooms
school has 180 classrooms
Its area is 25000

As this program shows, the major advantage of inheritance is that you can create a
general classification that can be incorporated into more specific ones. In this way, each
object can precisely represent its own subclass.

When writing about C++, the terms base and derived are generally used to describe
the inheritance relationship. However, the terms parent and child are also used. You
may also see the terms superclass and subclass.

Aside from providing the advantages of hierarchical classification, inheritance
also provides support for run-time polymorphism through the mechanism of virtual
functions. (Refer to Chapter 16 for details.)

Constructors and Destructors

It is very common for some part of an object to require initialization before it can be
used. For example, think back to the stack class developed earlier in this chapter.
Before the stack could be used, tos had to be set to zero. This was performed by using
the function init(). Because the requirement for initialization is so common, C++ allows
objects to initialize themselves when they are created. This automatic initialization is
performed through the use of a constructor function.

C++: The Complete Reference

A constructor is a special function that is a member of a class and has
the same name as that class. For example, here is how the stack class looks when
converted to use a constructor for initialization:

// This creates the class stack.
class stack {
int stck([SIZE];
int tos;
public:
stack(); // constructor
void push(int 1);
int pop();
}s

Notice that the constructor stack() has no return type specified. In C++, constructors
cannot return values and, thus, have no return type.
The stack() constructor is coded like this:

// stack's constructor
stack: :stack()
{
tos = 0;
cout << "Stack Initialized\n";

Keep in mind that the message Stack Initialized is output as a way to illustrate
the constructor. In actual practice, most constructors will not output or input anything.
They will simply perform various initializations.

An object's constructor is automatically called when the object is created. This
means that it is called when the object's declaration is executed. If you are accustomed
to thinking of a declaration statement as being passive, this is not the case for C++. In
C++, a declaration statement is a statement that is executed. This distinction is not just
academic. The code executed to construct an object may be quite significant. An object’s
constructor is called once for global or static local objects. For local objects, the constructor
is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many circumstances, an
object will need to perform some action or actions when it is destroyed. Local objects
are created when their block is entered, and destroyed when the block is left. Global
objects are destroyed when the program terminates. When an object is destroyed, its
destructor (if it has one) is automatically called. There are many reasons why a destructor
may be needed. For example, an object may need to deallocate memory that it had
previously allocated or it may need to close a file that it had opened. In C++, it is the
destructor that handles deactivation events. The destructor has the same name as the

Chapter 11: An Overview of C++ 285

constructor, but it is preceded by a ~. For example, here is the stack class and its constructor
and destructor. (Keep in mind that the stack class does not require a destructor; the one
shown here is just for illustration.)

// This creates the class stack.

class stack {
int stck[SIZE};

int tos;

public:
stack(); // constructor
~stack(); // destructor

void push{int 1i);
int pop();
}i

// stack's constructor
stack::stack()
{

tos = 0;

cout << "Stack Initialized\n";

// stack's destructor
stack::~stack()
{

cout << "Stack Destroyed\n";

Notice that, like constructors, destructors do not have return values.
To see how constructors and destructors work, here is a new version of the stack
program examined earlier in this chapter. Observe that init() is no longer needed.

// Using a constructor and destructor.
#include <iocostream>
using namespace std;

#define SIZE 100

// This creates the class stack.
class stack {

int stck[SIZE];

int tos;
public:

286

C++: The Complete Reference

stack(); // constructor
~stack(); // destructor
void push(int 1);

int pop();

I

// stack's constructor
stack: :stack()
{

tos = 0;

// stack's destructor
stack::~stack()

{

void stack::push(int i)
{
if (tos==SIZE) {

return;

}
stckltos] = 1i;
tos++;

int stack::pop()
{
if(tos==0) {

return 0;

}
tos--;
return stck(tos];

int main()

{

cout << "Stack Initialized\n";

cout << "Stack Destroyed\n";

cout << "Stack is full.\n";

cout << "Stack underflow.\n";

stack a, b; // create two stack

objects

Chapter 11: An Overview of C+ + 287

a.push(1);
b.push(2);

a.push(3);
b.push (4 ;

cout << a.pop{)
cout << a.pop() << " "
cout << b.pop{)

)

cout << b.pop

return 0;

This program displays the following:

Stack Initialized
Stack Initialized
3142

Stack Destroyed
Stack Destroyed

__| The C++ Keywords

There are 63 keywords currently defined for Standard C++. These are shown in

Table 11-1. Together with the formal C++ syntax, they form the C++ programming
language. Also, early versions of C++ defined the overload keyword, but it is obsolete.
Keep in mind that C++ is a case-sensitive language and it requires that all keywords
be in lowercase.

asm auto bool break

case catch char class

const const_cast continue default

delete do double dynamic_cast
else enum explicit export

Table 11-1. The C++ keywords

288 C++:The Complete Reference

extern talse float for
friend goto if inline
int long mutable namespace
new operator private protected
public register reinterpret_cast return
short signed sizeof static
static_cast struct switch template
this throw true try
typedef typeid typename union
unsigned using virtual void
volatile wchar_t while

Table 11-1. The C++ keywords (continued)

___| The General Form of a C++ Program

Although individual styles will differ, most C++ programs will have this general form:

#includes

base-class declarations

derived class declarations
nonmember function prototypes
int main()

{
!

nonmember function definitions

/..

In most large projects, all class declarations will be put into a header file and included
with each module. But the general organization of a program remains the same.

The remaining chapters in this section examine in greater detail the features
discussed in this chapter, as well as all other aspects of C++.

